Main Article Content

Abstract

Gold is a multifunctional precious metal. Apart from being jewelry, gold is a form of investment. For this reason, the public or investors need to know the estimated daily gold price for transactions for the public or investors who want to invest or also want to sell their gold, so they do not lose. This is the aim of this study. Many forecasting methods can be used to predict the daily gold price, but this study uses the ARIMA-GARCH hybrid model because this model can predict econometric models such as the daily gold price which usually contains high volatility. Daily gold price data was secondary data obtained from the investing.com website. The data was for the period March 12, 2016, to December 31, 2020. The results of this study are obtained for the ARIMA (1,1,1) -GARCH (2,1) hybrid model with a root mean square error (RMSE) forecasting accuracy value is 2.375454, the mean absolute error (MAE) is 1.702908, and the mean absolute percentage error (MAPE) is 0.001168113. From the results of this study, long-term investment is very profitable because there is an upward trend from the model obtained. For short-term investments, the public or investors have to update the research result model because the current gold price is influenced by the gold price only one period ago, so that when trading does not lose.

Keywords

Forecasting daily gold pForecasting daily gold price investment hybrid ARIMA-GARCHrice hybrid ARIMA-GARCH

Article Details

Author Biographies

Sigit Setyowibowo, STMIK PPKIA Pradnya Paramita

Technology Information Departement

Mohamad As'ad, STMIK PPKIA Pradnya Paramita

Technology Information Departement

Sujito Sujito, STMIK PPKIA Pradnya Paramita

Technology Information Departement

Eni Farida, STMIK PPKIA Pradnya Paramita

System Information Departement
How to Cite
Setyowibowo, S., As’ad, M., Sujito, S., & Farida, E. (2022). Forecasting of Daily Gold Price using ARIMA-GARCH Hybrid Model. Jurnal Ekonomi Pembangunan, 19(2), 257–270. https://doi.org/10.29259/jep.v19i2.13903

References

  1. Adem, K. (2017). Prediction of Gold Prices Using Artificial Neural Networks. International Journal of Engineering Research and Development Special Issue, 9(3), 83-89. DOI: 10.29137/umagd.350596
  2. Alkaf, F. T., Putra, D., & Soebagyo. (2017). Analisis Penjualan Emas Dan Penerapan Model Estimasi Yang Efektif Pada Pt Aneka Tambang. JABE (Journal of Applied Business and Economics), 4(3), 236-249. DOI: http://dx.doi.org/10.30998/jabe.v4i3.2481
  3. As’ad, M. (2012). Finding the Besr ARIMA model to forecast daily peak electricity demand. Proceedings of the Fifth Annual ASEARC Conference - Looking to the future - Programme and Proceedings, University of Wollongong.
  4. Dritsaki, S. (2018). The Performance of Hybrid ARIMA-GARCH Modeling and Forecasting Oil Price. International Journal of Energy Economics and Policy, 8(3), 14-21.
  5. Farida, E. & As’ad, M. (2021). The Forecasting of Monthly Inflation in Malang City Using an Autoregressive Integrated Moving Average. International Journal of Economics, Business and Accounting Research (IJEBAR), 5(2), 73-83.
  6. Gun, F. A., Bachtiar, F. A., & Cholissodin, I. (2019). Optimasi Fungsi Keanggotaan Fuzzy Tsukamoto dengan Algoritme Genetika pada Peramalan Harga Emas untuk Stock Trading. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 3(4), 3939-3948.
  7. Gunawan, A I., & Wirawati N G P. (2013). Perbandingan Berinvestasi Antara Logam Mulia Emas Dengan Saham Perusahaan Pertambangan Emas. E-Jurnal Akuntansi Universitas Udayana, 4(2), 406-420.
  8. Idris, A.S., Mohammed, Y.A. & Imam, A. (2021). On Comparative Performances of ARIMA, hybrid ARIMA-ARCH and hybrid ARIMA-GARCH Models in Modeling The Volatility Of Foreign Exchange. Global Scientific Journal, 9(3), 31-40.
  9. Iriani, R., & Suprayogi, N. (2018). Akuntansi Tabungan Emas Pegadaian Syariah, Jurnal Ekonomi Syariah Teori dan Terapan, 5(10), 848-859. http://dx.doi.org/10.20473/vol5iss201810pp848-859
  10. Johari, M. (2017). Investasi emas; alternatif berinvestasi di tengah krisis global, TAFAQQUH: Jurnal Hukum Ekonomi Syariah dan Ahwal Syahsiyah, 2(2), 24-35.
  11. Khamis. A. & Yee, P.H. (2018). A Hybrid Model of Artificial Neural Network and Genetic Algorithm in Forecasting Gold Price. European Journal of Engineering Research and Science, 3(6). 10-14. https://doi.org/10.24018/ejers.2018.3.6.758
  12. Kurniawan, I. (2019). Analisis Keuntungan Investasi Emas dengan IHSG. Jurnal Manajemen Bisnis dan Kewirausahaan, 3(2), 16-23. DOI:10.24912/jmbk.v3i2.4955
  13. Lahoti, J. H. (2017). An Analytical Study on Perception of investors towards Gold as an Investment Option, PARIPEX Indian Journal of Research, 6(3), 571-572.
  14. Rahma, A.P., & Canggih, C. (2021). Analisis Faktor-Faktor Yang Mempengaruhi Minat Masyarakat Terhadap Investasi Emas. Jurnal Ekonomika dan Bisnis Islam, 4(2), 98-108. https://doi.org/10.26740/jekobi.v4n2.p98-108
  15. Tripathy, N. (2018). Forecasting Gold Price with Auto Regressive Integrated Moving Average Model. International Journal of Economics and Financial Issues, 7(4), 324-329.
  16. Wei, W. S. (2006). Time series Analysis: Univariate and Multivariate Methods. 2nd edition. USA: Addison Wesley.
  17. Yaziz, S.R., Azizan, N.A., Zakaria R. & Ahmad, M.H. (2013). The Performance of hybrid ARIMA-GARCH modeling in forecasting gold price. 20th International Congress on Modelling and Simulation, Adelaide, Australia,1201-1207.