Main Article Content

Abstract

Indonesia's regional economy that is proxy by using Gross Regional Domestic Product (GRDP) per capita to form clusters is investigated. Besides, by using the Spatial Auto-regression (SAR) model, the effect of household consumption in a region to the surrounding area's economy is examined. The study on this topic is rather limited, especially in the regional economic development of the country. Furthermore, Indonesia is a heterogeneous country, and its consequence is that development policy should consider the geographic characteristics of the country. The results show that there are regional economy clusters in Java, Kalimantan, Sulawesi, and Sumatra. In contrast, household consumption in a region has a weak influence on the economy in the surrounding area.

Keywords

GRDP Spatial SAR Spillover.

Article Details

Author Biographies

Firman Herdiansah, Department of Economics Faculty of Economics and Business Universitas Brawijaya

Department of Economics
Faculty of Economics and Business
Universitas Brawijaya

Setyo Tri Wahyudi, Department of Economics Faculty of Economics and Business Universitas Brawijaya

Department of Economics
Faculty of Economics and Business
Universitas Brawijaya

How to Cite
Herdiansah, F., & Wahyudi, S. T. (2020). Testing the spatial auto-regression (SAR) model on Indonesia’s regional economy. Jurnal Ekonomi Pembangunan, 18(1), 63–74. https://doi.org/10.29259/jep.v18i1.11604

References

  1. Anselin, L. (1996). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. Spatial Analytical Perspectives on GIS, 111–125.
  2. Anselin, L. (1999). Interactive techniques and exploratory spatial data analysis. Geographic Information Systems: Principles, Techniques, Management and Applications, 253–266.
  3. Armstrong, H., & Taylor, L. (2000). Regional Economic and Policy. Blackwell.
  4. Badinger, H., & Egger, P. (2011). Estimation of higher-order spatial autoregressive cross-section models with heteroscedastic disturbances. Papers in Regional Science, 90(1), 213–235. https://doi.org/10 .1111/j.1435-5957.2010.00323.x
  5. Bai, C. E., Ma, H., & Pan, W. (2012). Spatial spillover and regional economic growth in China. China Economic Review, 23(4), 982–990. https://doi.org/10.1016/j.chieco.2012.04.016
  6. Brakman, S., Garretsen, H., & Schramm, M. (2000). The empirical relevance of the new economic geography: Testing for a spatial wage structure in Germany. Retrieved from http://ideas.repec. org/p/ces/ceswps/_395.html
  7. Feldman, M. P. (1999). The new economics of innovation, spillovers and agglomeration: Areview of empirical studies. Economics of Innovation and New Technology, 8(1–2), 5–25. https://doi.org /10.1080/10438599900000002
  8. Funke, M., & Niebuhr, A. (2005). Regional geographic research and development spillovers and economic growth: Evidence from West Germany. Regional Studies, 39(1), 143–153. https://doi.org/10.1080/0034340052000321904
  9. Lembang, F. K., Lessil, P. Y., & Aulele, S. N. (2017). Pengelompokkan Provinsi di Indonesia Berdasarkan PDRB atas Dasar Harga Konstan Tahun 2013. Jurnal Matematika, 7(2), 76. https://doi.org/10. 24843/jmat.2017.v07.i02.p84
  10. Lequiller, F., & Blades, D. (2014). Understanding National Accounts: Second Edition. In OECD Publishing. Retrieved from http://dx.doi.org/10.1787/9789264214637-en
  11. LeSage, J., & Pace, R. K. (2009). Introduction to spatial econometrics. In Introduction to Spatial Econometrics. https://doi.org/10.1111/j.1467-985x.2010.00681_13.x.
  12. Moran, P. A. P. (1948). The Interpretation of Statistical Maps Author(s): P. A. P. Moran Published by: Blackwell Publishing for the Royal Statistical Society Stable. Journal of the Royal Statistical Society. Series B (Methodological), 10(2), 243–251. http://www.jstor.org/stable/2983777.
  13. Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., Clements, A. C. A., … Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/ 9780198509882.003.0007.
  14. Poncet, S. (2005). A fragmented China: Measure and determinants of Chinese domestic market disintegration. Review of International Economics, 13(3), 409–430. https://doi.org/10.1111/j. 1467-9396.2005.00514.x.
  15. Porter, M. (1990). The Competitive Advantage of Nations. Basingstoke: Macmillan.
  16. Rafiy, M., Adam, P., Bachmid, G., & Saenong, Z. (2018). An analysis of the effect of consumption spending and investment on Indonesia’s economic growth. Iranian Economic Review, 22(3), 753–766. https://doi.org/10.22059/ier.2018.66642.
  17. Rum, I. A. (2011). The impact of trade costs in Indonesian agri-food cectors: An interregional CGE analysis.
  18. Setyaningsih, S. (2012). Using Cluster Analysis Study to Examine the Successful Performance Entrepreneur in Indonesia. Procedia Economics and Finance, 4(Icsmed), 286–298. https://doi.org/10.1016/s2212-5671(12)00343-7.
  19. Statistics Indonesia. (2019). Gross Regional Domestic Product of Regencies/Municipalities in Indonesia. Statistics Indonesia.
  20. Tobler, W. R. (1970). A Computer Movie Simulation Urban Growth in Detroit Region. Economic Geography, 46, 234–240. https://doi.org/10.1126/science.11.277.620.
  21. Yandell, B. S., & Anselin, L. (1990). Spatial Econometrics: Methods and Models. In Journal of the American Statistical Association (Vol. 85). https://doi.org/10.2307/2290042.
  22. Zhang, X., & Yu, J. (2018). Spatial weights matrix selection and model averaging for spatial autoregressive models. Journal of Econometrics, 203(1), 1–18. https://doi.org/10.1016/ j.jeconom.2017.05.021.

Most read articles by the same author(s)