Main Article Content
Abstract
This study aims to forecasting the Covid-19 Pandemic's effect on income inequality distribution in Kulon-Progo Regency during of 2020 to 2028. The study analysis tools utilized forecast are linear and non-linear trend. The historical data use during of 2010 to 2019, data source obtained from Central Bureau of Statistics Yogyakarta in statistical series book of 2020. The findings of forecast result show that the Covid-19 pandemic directly impact on the increased income inequality distribution. The implication is to carry out the process of economic recovery due to the Covid-19 pandemic case by identifying community groups who are vulnerable to decreased income through strengthening social safety nets. In addition, government policies can also optimize the utilization and transportation services to increase farmer exchange rates, because most people work in the agricultural sector.
Keywords
Article Details
Authors who publish with this journal agree to the terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Jurnal Ekonomi Pembangunan is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License..
References
- Arndt, C., Davies, R., Gabriel, S., Harris, L., Makrelov, K., Robinson, S., Levy, S., Simbanegavi, W., van Seventer, D., & Anderson, L. (2020). Covid-19 lockdowns, income distribution, and food security: An analysis for South Africa. Global Food Security, 26(May), 100410. https://doi.org/10.1016/j.gfs.2020.100410
- Banerjee, S., Chakrabarti, B. K., Mitra, M., & Mutuswami, S. (2020). On the Kolkata index as a measure of income inequality. Physica A: Statistical Mechanics and Its Applications, 545, 123178. https://doi.org/10.1016/j.physa.2019.123178
- Caldararo. (2020). Pr ep rin t Pr ep t. SSRN Electronic Journal.
- Chaudry, A., & Wimer, C. (2016). Poverty is Not Just an Indicator: The Relationship between Income, Poverty, and Child Well-Being. Academic Pediatrics, 16(3), S23–S29. https://doi.org/10.1016/j.acap.2015.12.010
- Choi, S. (2019). Is the current trend of income inequality sustainable? Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195329
- Domicolo, C., & Mahmoud, H. (2020). Degree-Based Gini Index for Graphs. Probability in the Engineering and Informational Sciences, 34(2), 157–171. https://doi.org/10.1017/S0269964819000044
- Fawaz, F., & Frey, E. (2020). The impact of abundancy of resources and regime type on income inequality: The case of less-developed countries. Kasetsart Journal of Social Sciences, 41(1), 1–7. https://doi.org/10.1016/j.kjss.2018.05.015
- Furman, E., Kye, Y., & Su, J. (2019). Computing the Gini index: A note. Economics Letters, 185, 108753. https://doi.org/10.1016/j.econlet.2019.108753
- Giorgi, G. M., & Gigliarano, C. (2017). the Gini Concentration Index: a Review of the Inference Literature. Journal of Economic Surveys, 31(4), 1130–1148. https://doi.org/10.1111/joes.12185
- Jiwani, S. S., & Antiporta, D. A. (2020). Inequalities in access to water and soap matter for the COVID-19 response in sub-Saharan Africa. International Journal for Equity in Health, 19(1), 10–12. https://doi.org/10.1186/s12939-020-01199-z
- Lau, L. L., Hung, N., Go, D. J., Ferma, J., Choi, M., Dodd, W., & Wei, X. (2020). Knowledge, attitudes and practices of COVID-19 among income-poor households in the Philippines: A cross-sectional study. Journal of Global Health, 10(1). https://doi.org/10.7189/JOGH.10.011007
- Liegghio, M., & Caragata, L. (2020). COVID-19 and Youth Living in Poverty: The Ethical Considerations of Moving From In-Person Interviews to a Photovoice Using Remote Methods. Affilia - Journal of Women and Social Work, 1–7. https://doi.org/10.1177/0886109920939051
- Maroko, A. R., Nash, D., & Pavilonis, B. T. (2020). COVID-19 and Inequity: a Comparative Spatial Analysis of New York City and Chicago Hot Spots. Journal of Urban Health, 461–470. https://doi.org/10.1007/s11524-020-00468-0
- O’Donoghue, C., Sologon, D. M., Kyzyma, I., & McHale, J. (2020). Modelling the Distributional Impact of the COVID-19 Crisis*. Fiscal Studies, 41(2), 321–336. https://doi.org/10.1111/1475-5890.12231
- Patel, J. A., Nielsen, F. B. H., Badiani, A. A., Assi, S., Unadkat, V. A., Patel, B., Ravindrane, R., & Wardle, H. (2020). Poverty, inequality and COVID-19: the forgotten vulnerable. Public Health, 183, 110–111. https://doi.org/10.1016/j.puhe.2020.05.006
- Policardo, L., Sanchez Carrera, E. J., & Risso, W. A. (2019). Causality between income inequality and corruption in OECD countries. World Development Perspectives, 14(February), 100102. https://doi.org/10.1016/j.wdp.2019.02.013
- Power, M., Doherty, B., Pybus, K., & Pickett, K. (2020). How COVID-19 has exposed inequalities in the UK food system: The case of UK food and poverty. Emerald Open Research, 2, 11. https://doi.org/10.35241/emeraldopenres.13539.2
- Progo, B. P. S. K. K. (2020). Kabupaten Kulon-Progo dalam Angka, 2020 Penyediaan Data untuk Perencanaan Pembangunan.
- Robles Aguilar, G., & Sumner, A. (2020). Who are the world’s poor? A new profile of global multidimensional poverty. World Development, 126, 104716. https://doi.org/10.1016/j.worlddev.2019.104716
- Rodela, T. T., Tasnim, S., Mazumder, H., Faizah, F., Sultana, A., & Hossain, M. M. (2020). Economic Impacts of Coronavirus Disease (COVID-19) in Developing Countries. 1–7. https://doi.org/10.31235/osf.io/wygpk
- Simon, L., Choi, S. E., Ticku, S., Fox, K., Barrow, J., & Palmer, N. (2020). Association of income inequality with orthodontic treatment use. Journal of the American Dental Association, 151(3), 190–196. https://doi.org/10.1016/j.adaj.2019.11.021
- Sitthiyot, T., & Holasut, K. (2020). A simple method for measuring inequality. Palgrave Communications, 6(1), 1–9. https://doi.org/10.1057/s41599-020-0484-6
- Sulemana, I., Nketiah-Amponsah, E., Codjoe, E. A., & Andoh, J. A. N. (2019). Urbanization and income inequality in Sub-Saharan Africa. Sustainable Cities and Society, 48(April), 101544. https://doi.org/10.1016/j.scs.2019.101544
- Suryahadi, A., Al Izzati, R., & Suryadarma, D. (2020). Estimating the Impact of Covid-19 on Poverty in Indonesia*. Bulletin of Indonesian Economic Studies, 0(0), 1–34. https://doi.org/10.1080/00074918.2020.1779390
- Tadjoeddin, M. Z., Yumna, A., Gultom, S. E., Rakhmadi, M. F., & Suryahadi, A. (2020). Inequality and violent conflict: new evidence from selected provinces in Post-Soeharto Indonesia. Journal of the Asia Pacific Economy, 0(0), 1–22. https://doi.org/10.1080/13547860.2020.1773607
- Teguh, M. & Bashir, A. (2019). Indonesia’s Economic Growth Forecasting, Sriwijaya International Journal of Dynamic Economics and Business, 3(2), 134-145. https://doi.org/10.29259/sijdeb.v3i2.134-145
- Teka, A. M., Temesgen Woldu, G., & Fre, Z. (2019). Status and determinants of poverty and income inequality in pastoral and agro-pastoral communities: Household-based evidence from Afar Regional State, Ethiopia. World Development Perspectives, 15(February), 100123. https://doi.org/10.1016/j.wdp.2019.100123
- Tolmachev, M. N., Barashov, N. G., Latkov, A. V., & Markov, V. A. (2019). Interregional Inequality of Population Incomes: Problems of Methodology and Estimation in the Russian Federation. SHS Web of Conferences, 62, 09003. https://doi.org/10.1051/shsconf/20196209003
- Webster, F., Connoy, L., Sud, A., Pinto, A. D., & Katz, J. (2020). Grappling with Chronic Pain and Poverty during the COVID-19 Pandemic. Canadian Journal of Pain, 4(1), 125–128. https://doi.org/10.1080/24740527.2020.1766855
- Zhang, Y., & Sun, P. (2020). Study on the diurnal dynamic changes and prediction models of the moisture contents of two litters. Forests, 11(1), 1–15. https://doi.org/10.3390/f11010095
References
Arndt, C., Davies, R., Gabriel, S., Harris, L., Makrelov, K., Robinson, S., Levy, S., Simbanegavi, W., van Seventer, D., & Anderson, L. (2020). Covid-19 lockdowns, income distribution, and food security: An analysis for South Africa. Global Food Security, 26(May), 100410. https://doi.org/10.1016/j.gfs.2020.100410
Banerjee, S., Chakrabarti, B. K., Mitra, M., & Mutuswami, S. (2020). On the Kolkata index as a measure of income inequality. Physica A: Statistical Mechanics and Its Applications, 545, 123178. https://doi.org/10.1016/j.physa.2019.123178
Caldararo. (2020). Pr ep rin t Pr ep t. SSRN Electronic Journal.
Chaudry, A., & Wimer, C. (2016). Poverty is Not Just an Indicator: The Relationship between Income, Poverty, and Child Well-Being. Academic Pediatrics, 16(3), S23–S29. https://doi.org/10.1016/j.acap.2015.12.010
Choi, S. (2019). Is the current trend of income inequality sustainable? Sustainability (Switzerland), 11(19). https://doi.org/10.3390/su11195329
Domicolo, C., & Mahmoud, H. (2020). Degree-Based Gini Index for Graphs. Probability in the Engineering and Informational Sciences, 34(2), 157–171. https://doi.org/10.1017/S0269964819000044
Fawaz, F., & Frey, E. (2020). The impact of abundancy of resources and regime type on income inequality: The case of less-developed countries. Kasetsart Journal of Social Sciences, 41(1), 1–7. https://doi.org/10.1016/j.kjss.2018.05.015
Furman, E., Kye, Y., & Su, J. (2019). Computing the Gini index: A note. Economics Letters, 185, 108753. https://doi.org/10.1016/j.econlet.2019.108753
Giorgi, G. M., & Gigliarano, C. (2017). the Gini Concentration Index: a Review of the Inference Literature. Journal of Economic Surveys, 31(4), 1130–1148. https://doi.org/10.1111/joes.12185
Jiwani, S. S., & Antiporta, D. A. (2020). Inequalities in access to water and soap matter for the COVID-19 response in sub-Saharan Africa. International Journal for Equity in Health, 19(1), 10–12. https://doi.org/10.1186/s12939-020-01199-z
Lau, L. L., Hung, N., Go, D. J., Ferma, J., Choi, M., Dodd, W., & Wei, X. (2020). Knowledge, attitudes and practices of COVID-19 among income-poor households in the Philippines: A cross-sectional study. Journal of Global Health, 10(1). https://doi.org/10.7189/JOGH.10.011007
Liegghio, M., & Caragata, L. (2020). COVID-19 and Youth Living in Poverty: The Ethical Considerations of Moving From In-Person Interviews to a Photovoice Using Remote Methods. Affilia - Journal of Women and Social Work, 1–7. https://doi.org/10.1177/0886109920939051
Maroko, A. R., Nash, D., & Pavilonis, B. T. (2020). COVID-19 and Inequity: a Comparative Spatial Analysis of New York City and Chicago Hot Spots. Journal of Urban Health, 461–470. https://doi.org/10.1007/s11524-020-00468-0
O’Donoghue, C., Sologon, D. M., Kyzyma, I., & McHale, J. (2020). Modelling the Distributional Impact of the COVID-19 Crisis*. Fiscal Studies, 41(2), 321–336. https://doi.org/10.1111/1475-5890.12231
Patel, J. A., Nielsen, F. B. H., Badiani, A. A., Assi, S., Unadkat, V. A., Patel, B., Ravindrane, R., & Wardle, H. (2020). Poverty, inequality and COVID-19: the forgotten vulnerable. Public Health, 183, 110–111. https://doi.org/10.1016/j.puhe.2020.05.006
Policardo, L., Sanchez Carrera, E. J., & Risso, W. A. (2019). Causality between income inequality and corruption in OECD countries. World Development Perspectives, 14(February), 100102. https://doi.org/10.1016/j.wdp.2019.02.013
Power, M., Doherty, B., Pybus, K., & Pickett, K. (2020). How COVID-19 has exposed inequalities in the UK food system: The case of UK food and poverty. Emerald Open Research, 2, 11. https://doi.org/10.35241/emeraldopenres.13539.2
Progo, B. P. S. K. K. (2020). Kabupaten Kulon-Progo dalam Angka, 2020 Penyediaan Data untuk Perencanaan Pembangunan.
Robles Aguilar, G., & Sumner, A. (2020). Who are the world’s poor? A new profile of global multidimensional poverty. World Development, 126, 104716. https://doi.org/10.1016/j.worlddev.2019.104716
Rodela, T. T., Tasnim, S., Mazumder, H., Faizah, F., Sultana, A., & Hossain, M. M. (2020). Economic Impacts of Coronavirus Disease (COVID-19) in Developing Countries. 1–7. https://doi.org/10.31235/osf.io/wygpk
Simon, L., Choi, S. E., Ticku, S., Fox, K., Barrow, J., & Palmer, N. (2020). Association of income inequality with orthodontic treatment use. Journal of the American Dental Association, 151(3), 190–196. https://doi.org/10.1016/j.adaj.2019.11.021
Sitthiyot, T., & Holasut, K. (2020). A simple method for measuring inequality. Palgrave Communications, 6(1), 1–9. https://doi.org/10.1057/s41599-020-0484-6
Sulemana, I., Nketiah-Amponsah, E., Codjoe, E. A., & Andoh, J. A. N. (2019). Urbanization and income inequality in Sub-Saharan Africa. Sustainable Cities and Society, 48(April), 101544. https://doi.org/10.1016/j.scs.2019.101544
Suryahadi, A., Al Izzati, R., & Suryadarma, D. (2020). Estimating the Impact of Covid-19 on Poverty in Indonesia*. Bulletin of Indonesian Economic Studies, 0(0), 1–34. https://doi.org/10.1080/00074918.2020.1779390
Tadjoeddin, M. Z., Yumna, A., Gultom, S. E., Rakhmadi, M. F., & Suryahadi, A. (2020). Inequality and violent conflict: new evidence from selected provinces in Post-Soeharto Indonesia. Journal of the Asia Pacific Economy, 0(0), 1–22. https://doi.org/10.1080/13547860.2020.1773607
Teguh, M. & Bashir, A. (2019). Indonesia’s Economic Growth Forecasting, Sriwijaya International Journal of Dynamic Economics and Business, 3(2), 134-145. https://doi.org/10.29259/sijdeb.v3i2.134-145
Teka, A. M., Temesgen Woldu, G., & Fre, Z. (2019). Status and determinants of poverty and income inequality in pastoral and agro-pastoral communities: Household-based evidence from Afar Regional State, Ethiopia. World Development Perspectives, 15(February), 100123. https://doi.org/10.1016/j.wdp.2019.100123
Tolmachev, M. N., Barashov, N. G., Latkov, A. V., & Markov, V. A. (2019). Interregional Inequality of Population Incomes: Problems of Methodology and Estimation in the Russian Federation. SHS Web of Conferences, 62, 09003. https://doi.org/10.1051/shsconf/20196209003
Webster, F., Connoy, L., Sud, A., Pinto, A. D., & Katz, J. (2020). Grappling with Chronic Pain and Poverty during the COVID-19 Pandemic. Canadian Journal of Pain, 4(1), 125–128. https://doi.org/10.1080/24740527.2020.1766855
Zhang, Y., & Sun, P. (2020). Study on the diurnal dynamic changes and prediction models of the moisture contents of two litters. Forests, 11(1), 1–15. https://doi.org/10.3390/f11010095